Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

Criterio del confronto (serie numeriche)

Home ยป Teoria serie numeriche ยป ๐Ÿ“‹ URL

Date due serie a termini positivi โˆ‘n=n0โˆžan\displaystyle\sum_{n=n_0}^{\infty}a_n e โˆ‘n=n0โˆžbn\displaystyle\sum_{n=n_0}^{\infty}b_n, supponiamo che

anโ‰คbnโˆ€โ€‰โ€‰nโ‰ฅnห‰a_n\leq b_n\quad\forall\,\,n\geq\bar{n}

Dove nห‰\bar{n} รจ un numero naturale arbitrariamente grande. Allora

  1. Se โˆ‘n=n0โˆžbn\displaystyle\sum_{n=n_0}^{\infty}b_n converge, allora anche โˆ‘n=n0โˆžan\displaystyle\sum_{n=n_0}^{\infty}a_n converge
  2. Se โˆ‘n=n0โˆžan\displaystyle\sum_{n=n_0}^{\infty}a_n diverge, allora anche โˆ‘n=n0โˆžbn\displaystyle\sum_{n=n_0}^{\infty}b_n diverge

Nota bene: nel caso 1, se la serie bnb_n diverge, allora non si possono trarre conclusioni sul carattere della serie ana_n.

Nota bene: Nel caso 2, se la serie ana_n converge, allora non si possono trarre conclusioni sul carattere della serie bnb_n.

Questa pagina รจ stata utile?
SรฌNo
Torna in alto